Quadratic Formula

If $a x^{2}+b x+c=0$, what values of x comprise the solution?
First, divide through by a :

$$
\frac{a x^{2}}{a}+\frac{b x}{a}+\frac{c}{a}=x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Add and subtract $\left(\frac{b}{2 a}\right)^{2}$, so that we have

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}=0
$$

Now, note that the first three terms can be rewritten as follows:

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\left(x+\frac{b}{2 a}\right)^{2}
$$

and, therefore,

$$
\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}=0
$$

or

$$
\left(x+\frac{b}{2 a}\right)^{2}=\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}
$$

Now, taking the square root of each side of this equation we have

$$
x+\frac{b}{2 a}= \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}= \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\left(\frac{2 a}{2 a}\right)^{2} \frac{c}{a}}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Therefore,

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

which is the well-known quadratic formula, usually written in the form:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

